Lesson 7. Resource Allocation and Blending Models, Revisited

- In this lesson, we will learn to write optimization models with sets and parameters

Example 1. Farmer Jones decides to supplement her income by baking and selling two types of cakes, chocolate and vanilla. Each chocolate cake sold gives a profit of $\$ 3$, and the profit on each vanilla cake sold is $\$ 4$. Each chocolate cake uses 4 eggs and 4 pounds of flour, while each vanilla cake uses 2 eggs and 6 pounds of flour. Farmer Jones has 32 eggs and 48 pounds of flour available. Assume all cakes baked are sold, and fractional cakes are OK. Write a linear program that determines how many of each type of cake should Farmer Jones bake in order to maximize her profit.

- Recall that the linear program we wrote for this problem is

$$
\begin{array}{llll}
C=\text { number of chocolate cakes to bake } & \text { maximize } & 3 C+4 V & \text { (total profit) } \\
V=\text { number of vanilla cakes to bake } & \text { subject to } & 4 C+2 V \leq 32 & \text { (eggs available) } \\
& 4 C+6 V \leq 48 & \text { (flour available) } \\
& C \geq 0, V \geq 0 &
\end{array}
$$

Example 2. Farmer Jones decides to supplement her income by baking and selling cakes. Let K be the set of cake types that she sells. Each cake k sold yields a profit of p_{k}, for all $k \in K$. Each cake type requires a certain mixture of ingredients. Let I be the set of ingredients that are used. Each type k cake requires $a_{i k}$ units of ingredient i, for all $i \in I$ and $k \in K$. Farmer Jones has b_{i} units of ingredient i available, for all $i \in I$. Assume all cakes baked are sold, and fractional cakes are OK. Write a linear program that determines how many of each type of cake should Farmer Jones bake in order to maximize her profit.

- Recall that
- constants are numbers that are fixed
- parameters are constants represented by symbols
- What are the sets and parameters in Example 2?

$$
\begin{aligned}
& \text { Sets. } \quad K=\text { set of cake types } \\
& \quad I=\text { set of ingredients } \\
& \text { Parameters. } \quad \begin{aligned}
& p_{k}=\text { unit profit for cate type } k \text { for } k \in K \\
& a_{i k}=\text { units of ingredient } i \text { used in cake tope } k \\
& b_{i}=\text { units of ingredient } i \in I \text { available for } i \in I
\end{aligned}
\end{aligned}
$$

- How do these sets and parameters relate to the constants given in Example 1?

$$
\begin{array}{lll}
K=\{c, v\} & p_{c}=3 & a_{e, c}=4 \\
p_{v}=4 & a_{f, c}=4 & a_{e, v}=2 \\
a_{f, v}=6 \\
b_{e}=32 & b_{f}=48
\end{array}
$$

- Rewrite the linear program for Example 1 using the parameters you defined above.

DVs. $\quad x_{c}=\#$ chocolate cakes to bake $x_{v}=\#$ vanilla cakes to bake

$$
\left.\begin{array}{llll}
\max & p_{c} x_{c}+p_{v} x_{v} & & \\
\text { s.t. } & a_{e, c} x_{c}+a_{e, v} x_{v} \leq b_{e} & \text { maximize } & 3 C+4 V \\
& & \text { subject to } & 4 C+2 V \leq 32
\end{array} \quad \text { (total profit) } \text { (eggs available) }\right) \text { (flour available) }
$$

$$
x_{c} \geq 0, \quad x_{v} \geq 0
$$

- Now write a linear program for Example 2, using summation notation and for statements.

$$
\begin{aligned}
& \text { DVs. } x_{k}=\# \text { type } k \text { cakes to bake for } k \in K \\
& \max \quad \sum_{k \in K} p_{k} x_{k} \quad \text { (total profit) } \\
& \text { st. } \sum_{k \in K} a_{i, k} x_{k} \leq b_{i} \quad \text { for } i \in I \quad \text { (ingredient } \begin{array}{l}
\text { availability) } \\
x_{k} \geqslant 0 \quad \text { for } k \in K \quad \text { (wonnegativity) }
\end{array}
\end{aligned}
$$

- This is a parameterized optimization model: an optimization model where at least one constant is a parameter
- The parameters in this model are placeholders for concrete set elements and numerical values
- This model is valid for any problem of the same structure
- Just need to specify concrete set elements and numerical values for the parameters
- egg. specify elements for K and I; numerical values for p_{k} for $k \in K, b_{i}$ for $i \in I$, and $a_{i k}$ for $i \in I$ and $k \in K$

Example 3. The Hoosier Gasoline Company produces two blends of gasoline, regular and premium, by mixing three different types of oil. Each type of oil comes in barrels and has its own costs and octane ratings, which are given below:

Type	Cost/Barrel	Octane Rating
1	45	93
2	35	90
3	20	87

Premium gasoline must consist of at least 30% Type 1 oil. In addition, the minimum weighted average octane rating and minimum production requirements for each blend are as follows:

Blend	Weighted Average Octane Rating	Demand
Regular	89	15,000 barrels
Premium	91	12,500 barrels

Formulate a linear program that determines how to meet the demand for each blend of gasoline at minimum cost.

- Recall that the linear program we wrote for this problem is
$R_{1}=$ number of barrels of Type 1 oil used in regular blend
$P_{1}=$ number of barrels of Type 1 oil used in premium blend
$R_{2}, P_{2}, R_{3}, P_{3}$ defined similarly

$$
\begin{array}{lll}
\text { minimize } & 45\left(R_{1}+P_{1}\right)+35\left(R_{2}+P_{2}\right)+20\left(R_{3}+P_{3}\right) & \text { (total cost) } \\
\text { subject to } & P_{1} \geq 0.3\left(P_{1}+P_{2}+P_{3}\right) & \text { (premium must have at least 30\% Type 1 oil) } \\
& 93 R_{1}+90 R_{2}+87 R_{3} \geq 89\left(R_{1}+R_{2}+R_{3}\right) & \text { (regular octane requirement) } \\
& 93 P_{1}+90 P_{2}+87 P_{3} \geq 91\left(P_{1}+P_{2}+P_{3}\right) & \text { (premium octane requirement) } \\
& R_{1}+R_{2}+R_{3} \geq 15000 & \text { (regular demand) } \\
& P_{1}+P_{2}+P_{3} \geq 12500 & \text { (premium demand) } \\
& R_{1} \geq 0, R_{2} \geq 0, R_{3} \geq 0, & \text { (nonnegativity) } \\
& P_{1} \geq 0, P_{2} \geq 0, P_{3} \geq 0 &
\end{array}
$$

- Describe the constants of this problem as sets and parameters.

$$
\begin{aligned}
& \text { Sets. } B=\text { set of gas blends }=\{R, P\} \\
& T=\text { set of oil types }=\{1,2,3\} \\
& \text { Parameters. } d_{j}=\text { demand for blend } j \text { for } j \in B \\
& c_{i}=\text { cost/barrel for oil } i \quad \text { for } i \in T \\
& r_{i}=\text { octane rating for oil } i \text { for } i \in T \\
& a_{j}=\text { weighted avg. octave requirement for blend } j \text { for } j \in B
\end{aligned}
$$

- Write a parameterized linear program for this problem using the sets and parameters you described above.

DVs. $x_{i, j}=\#$ barrels of oil $i \rightarrow$ blend j

$$
\min \sum_{i \in T} c_{i} \sum_{j \in B} x_{i j} \quad \text { (total cost) }
$$

$$
\text { st. } \quad x_{1 p} \geqslant 0.3 \sum_{i \in T} x_{i p} \quad \text { (premium has } \geqslant 30 \%_{0} \text { Type } 1 \text { oil) }
$$

$$
\sum_{i \in T} x_{i j} \geq d_{j} \quad \text { for } j \in B \quad \text { (demand requirements) }
$$

$\sum_{i \in T} r_{i} x_{i j} \geqslant a_{j} \sum_{i \in T} x_{i j}$ for $j \in B \quad$ (octane requirements)

$$
x_{i j} \geqslant 0 \quad \text { for } i \in T, j \in B \quad \text { (nonnegativity) }
$$

